• You will need to login or register before you can post a message. If you already have an Agriville account login by clicking the login icon on the top right corner of the page. If you are a new user you will need to Register.

Announcement

Collapse
No announcement yet.

Carbon Recycling Breakthrough Converts 100% Of CO2 Into Ethylene

Collapse
X
Collapse
 
  • Filter
  • Time
  • Show
Clear All
new posts

    Carbon Recycling Breakthrough Converts 100% Of CO2 Into Ethylene



    "Carbon Recycling Breakthrough Converts 100% Of CO2 Into Ethylene

    By Brian Westenhaus - Sep 17, 2022, 12:00 PM CDT
    University of Illinois Chicago researchers have developed a new way to convert 100% of captured carbon dioxide into ethylene.
    The team’s approach surpasses the net-zero carbon goal of other carbon capture and conversion technologies.
    As the process matures we might see a gradual shift from fossil fuel sources to a form of a current CO2 recycling norm.

    The University of Illinois Chicago researchers new system uses electrolysis to transform captured carbon dioxide gas into high purity ethylene, with other carbon-based fuels and oxygen as byproducts.

    Their reporting paper has been published in Cell Reports Physical Science.

    The discovery offers a way to convert 100% of carbon dioxide captured from industrial exhaust into ethylene, a key building block for plastics, and major product made from ethylene.

    While researchers have been exploring the possibility of converting carbon dioxide to ethylene for more than a decade, the UIC team’s approach is the first to achieve nearly 100% utilization of carbon dioxide to produce hydrocarbons

    The process can convert up to 6 metric tons of carbon dioxide into 1 metric ton of ethylene, recycling almost all carbon dioxide captured. Because the system runs on electricity, the use of renewable energy can make the process carbon negative.

    According to Singh, his team’s approach surpasses the net-zero carbon goal of other carbon capture and conversion technologies by actually reducing the total carbon dioxide output from industry. “It’s a net negative,” he said. “For every 1 ton of ethylene produced, you’re taking 6 tons of CO2 from point sources that otherwise would be released to the atmosphere.”

    Previous attempts at converting carbon dioxide into ethylene have relied on reactors that produce ethylene within the source carbon dioxide emission stream. In these cases, as little as 10% of CO2 emissions typically converts to ethylene. The ethylene must later be separated from the carbon dioxide in an energy-intensive process often involving fossil fuel energy.

    In UIC’s approach, an electric current is passed through a cell, half of which is filled with captured carbon dioxide, the other half with a water-based solution. An electrified catalyst draws charged hydrogen atoms from the water molecules into the other half of the unit separated by a membrane, where they combine with charged carbon atoms from the carbon dioxide molecules to form ethylene.

    Among manufactured chemicals worldwide, ethylene ranks third for carbon emissions after ammonia and cement. Ethylene is used not only to create plastic products for the packaging, agricultural and automotive industries, but also to produce chemicals used in antifreeze, medical sterilizers and vinyl siding for houses.

    Ethylene is usually made in a process called steam cracking that requires enormous amounts of heat. Cracking generates about 1.5 metric tons of carbon emissions per ton of ethylene created. On average, manufacturers produce around 160 million tons of ethylene each year, which results in more than 260 million tons of carbon dioxide emissions worldwide.

    In addition to ethylene, the UIC scientists were able to produce other carbon-rich products useful to industry with their electrolysis approach. They also achieved a very high solar energy conversion efficiency, converting 10% of energy from the solar panels directly to carbon product output. This is well above the state-of-the-art standard of 2%. For all the ethylene they produced, the solar energy conversion efficiency was around 4%, approximately the same rate as photosynthesis."

    Cheers

    #2
    Completely economically unfeasible even with renewable assumption that it's free energy.

    Comment


      #3
      Originally posted by tweety View Post
      Completely economically unfeasible even with renewable assumption that it's free energy.
      The new green deal assumes renewable energy is free… therefore the logic works on a scale of the climate change justification to the decarbonization of our civilization … environment and economic ramifications are obviously ignored.

      Like electric aircraft… did you see this?

      East of Calgary a 600ha plant site to build Dash 8 and twin otters… no doubt electric propulsion will be integrated into DeHavillands next generation aircraft…

      A world of interesting Paradoxical solutions…

      Cheers

      Comment

      • Reply to this Thread
      • Return to Topic List
      Working...
      X

      This website uses tracking tools, including cookies. We use these technologies for a variety of reasons, including to recognize new and past website users, to customize your experience, perform analytics and deliver personalized advertising on our sites, apps and newsletters and across the Internet based on your interests.
      You agree to our and by clicking I agree.