• You will need to login or register before you can post a message. If you already have an Agriville account login by clicking the login icon on the top right corner of the page. If you are a new user you will need to Register.

Announcement

Collapse
No announcement yet.

CoorsTek proton ceramic membranes produce hydrogen from ammonia, natural gas or bioga

Collapse
X
Collapse
 
  • Filter
  • Time
  • Show
Clear All
new posts

    CoorsTek proton ceramic membranes produce hydrogen from ammonia, natural gas or bioga

    A development team from CoorsTek Membrane Sciences, in collaboration with international research partners, have successfully used ceramic membrane technology to develop a scalable hydrogen generator that makes hydrogen from electricity and fuels including natural gas, biogas and ammonia with near zero energy loss. A paper on the work is published...


    "A development team from CoorsTek Membrane Sciences, in collaboration with international research partners, have successfully used ceramic membrane technology to develop a scalable hydrogen generator that makes hydrogen from electricity and fuels including natural gas, biogas and ammonia with near zero energy loss. A paper on the work is published in the journal Science.

    Energy efficiency is key to the future of hydrogen as a clean fuel. Our work shows that protonic membranes can make hydrogen from ammonia, natural gas and biogas so efficiently that hydrogen fuel cell cars will have lower carbon footprint than electric cars charged from the electricity grid.

    —co-author Irene Yuste, chemical engineer at CoorsTek Membrane Sciences and PhD candidate at the University of Oslo
    Coorstek-membrane-science-hydrogen-cleaner-than-electricity-infographic"

    Proton ceramic membranes are electrochemical energy converters that work by first splitting hydrogen-containing molecules, such as water or methane, and then further breaking hydrogen atoms into protons and electrons. Protons are transported through the solid ceramic membrane while electrons are transported separately through a metallic conductor connected to a power source. When protons and electrons recombine on the other side of the ceramic membrane, pure hydrogen is produced as a compressed gas.

    When energy is transformed from one form to another there is energy loss. With our proton ceramic membranes, we can combine otherwise distinct steps of conventional hydrogen production from fuels like natural gas and ammonia into a single stage where heat for catalytic hydrogen production is supplied by the electrochemical gas separation. The result is a thermally balanced process that makes hydrogen with near zero energy loss.

    —co-author Jose Serra, professor with Instituto de Tecnología Química in Spain
    Proton ceramic membranes have been under development at universities and corporate laboratories for three decades, with thousands of scientists contributing to incremental improvements. The report in Science marks the first demonstration of proton ceramic membrane technology at practical scales to make hydrogen for fuel cell cars and other clean energy deployments.

    Key to the recent breakthrough in the scale-up is a novel nickel-based glass-ceramic composite interconnect material developed by CoorsTek Membrane Sciences. The composite can be shaped like a glass during fabrication, has the high-temperature robustness of a ceramic, and the electronic conductivity of a metal.

    Our ceramic membrane technology is built from small cells that are joined into stacks and further combined into bigger modules. The modular nature of this technology makes it possible to start with small hydrogen generators and scale big by adding new modules as demand for hydrogen increase.

    —Per Vestre, Managing Director for CoorsTek Membrane Sciences
    With the ability to run on natural gas, biogas, or ammonia, the proton ceramic membranes offer a fuel-flexible and fuel-flexible hydrogen production platform. And when hydrocarbons are used as fuel, the membranes directly deliver by-product CO2 as a concentrated stream that can easily be liquified for cost-effective transport to use or storage so that no carbon is released to the atmosphere.

    Authors of the report published in Science include scientists and engineers from CoorsTek Membrane Sciences, the University of Oslo and the research institute SINTEF in Norway, and the Instituto de Tecnología Química in Valencia, Spain. The work was further supported by technology experts and financial resources from leading energy companies, including Saudi Aramco, ENGIE, Equinor, ExxonMobil, Shell and TotalEnergies. A next step in the on-going development program is to install a pilot plant hydrogen generator at Saudi Aramco’s headquarter campus in Dhahran, Saudi Arabia.

    Norway’s state-owned enterprise for carbon capture, storage and transport, Gassnova, through its CLIMIT program, and the Research Council of Norway, through its NANO2021 program, also contributed funding to the work.

    Resources

    Clark et al. (2022) “Single-step hydrogen production from NH3, CH4, and biogas in stacked proton ceramic reactors”, Science doi: 10.1126/science.abj3951

    Cheers

    #2
    Very interesting, thanks

    Comment


      #3
      take 2 methane molecules (nat gas) run them through this catalyst...out comes 4 H2 molecules(clean energy) and 2 carbon molecules(diamonds)
      this is perfect

      Comment

      • Reply to this Thread
      • Return to Topic List
      Working...
      X

      This website uses tracking tools, including cookies. We use these technologies for a variety of reasons, including to recognize new and past website users, to customize your experience, perform analytics and deliver personalized advertising on our sites, apps and newsletters and across the Internet based on your interests.
      You agree to our and by clicking I agree.